本站小編為你精心準備了微課評價指標體系構建參考范文,愿這些范文能點燃您思維的火花,激發您的寫作靈感。歡迎深入閱讀并收藏。
1建立微課評價系統的遞階層次結構
根據層次分析法原理,在作者對微課進行系統分析的基礎上,將其分解成為由元素組成的各部分,并把這些元素按屬性的不同分為若干組,形成不同層次。同一層次的元素作為準則對下一層次的某些因素起支配作用,同時它又受到上一層元素的支配。這種從上至下的支配關系形成了一個遞階層次[2]。為此,筆者對已有微課的評價指標、多媒體課件的評價指標以及網絡視頻課程資源的評價標準進行了深人的研究,總結出大量評價指標項,并對各項指標進行匯總,并結合微課程的特征,初步形成了一個由4個一級指標,13個二級指標組成的微課程的評價指標體系的初步框架如表1。
2確定初始權重的計算
采用層次分析法,分別求出微課評價指標體系的一級指標和二級指標的初始權重,方法如下:
(1)構造比較判斷矩陣。由專家對層次所有指標進行兩兩比較,按規則判斷它們的相對重要程度,并將判斷結果量化,構成判斷矩陣。判斷結果量化的規則采用美國運籌學家A.L.Saaty教授提出的1-9標度法,有關1-9比率標度及其內容見表2。對同層指標兩兩比較判斷后,獲得各層次的判斷矩陣。
(2)層次單排序及其一致性檢驗。判決矩陣對應于最大特征值的特征向量W,經歸一化后即為同一層次相應因素對于上一層次某因素相對重要性的排序權值,這一過程稱為層次單排序。∏nj=1本文采用方根法進行計算,首先將判斷矩陣按行相乘,為避免違反邏輯的判決矩陣導致決策失誤,需對判決矩陣進行一致性檢驗。用A.LSaaty的平均隨機一致性指標對判斷矩陣進行一致性檢驗。根據各平均一致性指標,求出判斷矩陣的一致性指數CI=λmax-n/n-1。隨機一致性比率CR=CI/RI,若CR<0.1,則認為矩陣具有滿意的一致性;否則必須重新調整矩陣,直至矩陣具有滿意的一致性。
(3)層次總排序及一致性檢驗。計算同一層次所有因素對于高層次(總目標)相對重要性的排序,稱為層次總排序,這一過程是最高層次到最低層次逐層進行的,在層次總排序完成后,也要做一致性檢驗[3]。設U層中與Ui相關的因素的成對比較判斷矩陣在單排序中經一致性檢驗,求得單排序一致性指標CI(i),(i=1,A,m),相應的平均隨機一致性指標為RI(i)(CI(i)、RI(i)已在層次單排序時求得),則U層總排序隨機一致性比例CR=,當CR<0.10時,認為層次總排序結果具有較滿意的一致性并接受該分析結果。這時需要進行總排序一致性檢驗,CR總==0.0473<0.10,說明各判決矩陣均符合一致性要求。
3結論
微課作為教育界一個新的研究領域,其相關的研究仍處于初級階段,對于如何進行微課的評價更是模糊,因此深入研究微課的評價方法具有重要的現實意義。本文運用層次分析法建立了一個由4個一級指標,13個二級指標組成的微課程的評價指標體系,并對其賦予權重。與一般的評價方法相比,利用層次分析法確定的權重分配更合理,評價結果更可靠,可操作性更強,整個評價步驟明確,評判規則簡單,指標量化和數據處理部分可通過計算機軟件實現。
作者:王澤穎 趙啟斯 單位:浙江師范大學 教師教育學院