前言:我們精心挑選了數篇優質中學數學研究論文文章,供您閱讀參考。期待這些文章能為您帶來啟發,助您在寫作的道路上更上一層樓。
一、“四大難關”的成因
立足于幫助學生順利度過“四大難關”,教材研究的首要任務是應該搞清各個“難關”的成因。對此作宏觀分析,我們容易概括出下面三個方面的成因:
(1)抽象層次的提高
教學內容的抽象性是眾所周知的,但作為數學教材的數學內容,則著意體現由直觀到抽象的漸變過程,以適應學生認識的發展,在這種變化過程中,起伏程度有所不同,各大難關所表現的正是抽象程度的驟變過程,抽象層次驟然提高,這種變化若學生不能立即適應,就成為學習數學的巨大障礙,就成為“難關”了。
如從算術到代數的過渡,其重要標志就是用字母表示數,特別是字母代替的數既是確定的,又是任意的,這種兩重性與小學階段的數學內容相比,抽象程度顯著提高,可以說表現為一次飛躍;從代數到幾何的過渡,其抽象程度的飛躍則表現在由以前的單純的以計算為主到對數學問題的推理論證、大量抽象符號和數學語言的運用過渡;由常量數學到變量數學的過渡,以函數概念的引入為標志,宣布了數學問題的研究由處理相對穩定的數學問題進入處理運動、變化的量與量關系的數學問題的領域,標志著抽象層次的又一次大的邁進;而由有限到無限的過渡,是以極限概念的引入為標志的,其推理方式由對有限問題的處理進入對無限問題的處理,抽象程度又一次發生了質的改變。由此可見,抽象層次的提高,是“難關”的成因之一。
(2)研究對象的轉變
恩格斯在《反杜林論》中曾指出:“……純數學是以現實世界的空間形式和數量關系--這是非常現實的材料--為對象的”這給數學尤其是初等數學的本質作出了很科學的概括。圍繞“數”和“形”這兩個方面討論而展開的。而在教材內容的發展過程中,由以數為主要研究對象的內容轉變到以形為主要研究對象的內容時,其角度、特點以及抽象程度都有顯著的變化,這一轉變過程中,學生不能很快適應,就會形成由代數到幾何的過渡--初二平面幾何入門的一大難關。由數到形,又到數形結合,研究量與量之間運動、變化過程中表現出的關系,則又是一類研究對象,這就是函數概念的引進--因研究對象與研究方法的轉變而導致的不適應,就出現了由常量數學到變量數學過渡的這一難關。而其它幾大難關也不同程度的涉及到研究對象的改變。由此可知,數學內容研究對象的轉變也是“難關”的成因之一。
(3)思維方式的轉變
每一次“難關”的出現,都相應地出現思維方式上大的轉變,都是對前面習慣思維的揚棄。當教學思維從特殊轉入對一般情況的研究時,就是相應的第一大難關的來臨,此時可以說思維進入歸納思維的范圍;而當平面幾何以全新的研究對象出現時,演繹推理--從一般到特殊的思維方式占了主導地位,這種改變又導致了第二大難關的產生,而對辯證思維要求的提高,是導致后兩大難關的重要因素,因為這要經受由相對穩定--運動變化--無限領域的一系列重大變革,數學中的靜與動、有限與無限等矛盾在運動中被一一揭示出來,在思想方向上使中學生經受一次又一次的重大洗禮。由此可見,思維方式的轉變是“難關”的重要成因。
二、對策
(1)廣泛聯系、挖掘量變因素
前面已經指出,“難關”的出現其實質是一個質變過程,它需要量變的積累,如果量變有了充分準備,質變就顯得自然,“難關”也就容易克服。因此,就需要深刻挖掘量變因素,將教材抽象程度加工到使學生通過努力能夠接受的水平上來。在代數關系的研究中,積極注意挖掘與幾何結合較緊密的內容,廣泛聯系,縮小接觸新內容時的陌生度,避免因研究對象的變化而產生的心理障礙。
(2)重點深入,合理設置問題
要將“難關”分散到普通教材中來,就需要注意對普通教材由微觀到宏觀的透徹研究與重點深入。首先,明確局部內容在整體數學教材體系中的地位和作用;其次,運用前文所述的教材研究方法,合理設置問題,使問題的步子與學生的思維水平同步前進,以局部知識的掌握為整體服務,例如,針對某一概念,可圍繞下面幾個角度設置問題:概念的構成;概念所涉及的子概念;概念的外延;概念的內涵;概念的確定與否定;概念之間的關系;概念的應用以及由概念而設計的一些構造性問題等等。當然有些問題可設置一些啟發性的提問以使學生獨立獲得知識。問題與問題之間要有一定的梯度,以利于教學時啟發學生思維。
問題解決產生的背景是什么?它的意義是什么?它對我國中學數學課程建設有何重要性?怎樣在中學數學課程中體現問題解決的思想?本文擬對此作初步探討。
一、背景和意義
19世紀末,20世紀初,一些心理學家首先對問題解決進行了研究,并對“問題解決”作了諸多的闡釋。在國際數學教育界,從美國的波利亞首先對怎樣解題作了詳盡的探討開始,逐漸對這個問題展開了研究。尤其是在美國,從60年代“新數運動”過分強調數學的抽象結構,忽視數學與實際的聯系,脫離教學實際,到70年代“回到基幢走向另一個極端,片面強調掌握低標準的基礎知識,數學教學水平普遍下降。在對于數學教育發展方向作了長期探索以后,“問題解決”和“大眾數學(mathematicsforal)”已經成為美國數學教育的響亮口號,并產生國際影響。
什么是問題解決,由于觀察的角度不同,至今仍然沒有完全統一的認識。
有的認為,問題解決指的是人們在日常生活和社會實踐中,面臨新情景、新課題,發現它與主客觀需要的矛盾而自己卻沒有現成對策時,所引起的尋求處理問題辦法的一種心理活動。有的把學習分成八種類型:信號學習、……概念學習、法則學習和問題解決。問題解決是其中最高級和復雜的一種類型,意味著以獨特的方式選擇多組法則,并且把它們綜合起來運用,它將導致建立起學習者先前不知道的更高級的一組法則。英國學校數學教育調查委員會報告《數學算數》則認為:把數學應用于各種情形的能力就是“問題解決”。全美數學教師理事會《行動的議程》對問題解決的意義作了如下說明:第一,問題解決包括將數學應用于現實世界,包括為現時和將來出現的科學理論與實際服務,也包括解決拓廣數學科學本身前沿的問題;第二,問題解決從本質上說是一種創造性的活動;第三,問題解決能力的發展,其基礎是虛心、好奇和探索的態度,是進行試驗和猜測的意向;等等。
從上述對問題解決意義的闡述中,我們可以看到一些共性和相通之處。從數學教育的角度來看,問題解決中所指的問題來自兩個方面:現實社會生活和生產實際,數學學科本身。問題的一個重要特征是其對于解決問題者的新穎性,使得問題解決者沒有現成的對策,因而需要進行創造性的工作。要順利地進行問題解決,其前提是已經了解、掌握所需要的基礎知識、基本技能和能力,在問題解決中要綜合地運用這些基礎知識、基本技能和能力。在問題解決中,問題解決者的態度是積極的。此外,在學校數學教學中,所謂創造性地解決問題,有別于數學家的創造性工作,主要指學習中的再創造。因而,筆者認為,從數學教育的角度看,問題解決的意義是:以積極探索的態度,綜合運用已具有的數學基礎知識、基本技能和能力,創造性地解決來自數學課或實際生活和生產實際中的新問題的學習活動。
簡言之,就數學教育而言,問題解決就是創造性地應用數學以解決問題的學習活動。
問題解決中,問題本身常具有非常規性、開放性和應用性,問題解決過程具有探索性和創造性,有時需要合作完成。
二、“問題解決”的重要性
問題解決已引起國內外數學教育界的廣泛重視,把它和數學課程緊密聯系起來,已是國際數學教育的一個趨勢。究其原因,筆者認為主要有以下幾方面:
(一)時代呼喚創新
在國際競爭日益激烈的當今世界,各國政府乃至普通老百姓都越來越清楚認識到,國家的富強,乃至企業的興衰,無不取決于對科學技術知識的學習、掌握及其創造性的開拓和應用。但創造能力并非與生俱有,必須通過有意識的學習和訓練才能形成。學校教育必須重視培養學生應用所學知識進行創造性工作的能力。問題解決正反映了這種社會需要。
(二)我國數學教育的成功和不足
我國的中學數學教學與國際上其它一些國家的中學數學教學比較,具有重視基礎知識教學,基本技能訓練,數學計算、推理和空間想象能力的培養等顯著特點,因而我國中學生的數學基本功比較扎實,學生的整體數學水平較高。然而,改革開放也使我國數學教育界看到了我國中學數學教學的一些不足。其中比較突出的兩個問題是,學生應用數學的意識不強,創造能力較弱。學生往往不能把實際問題抽象成數學問題,不能把所學的數學知識應用到實際問題中去,對所學數學知識的實際背景了解不多;學生機械地模仿一些常見數學問題解法的能力較強,而當面臨一種新的問題時卻辦法不多,對于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發現問題、解決問題的科學思維方法了解不夠。面對這種情況,我國數學教育界采取了一些相應措施。例如,北京、上海等地分別開展了中學生數學應用競賽,在近年高校招生數學考試中,也加強了對學生應用數學意識和創造性思維方法與能力的考查等。雖然這些措施收到了一定的成效,然而要從根本上改變現狀,還應在中學數學課程設計上有所突破。一些學者認為,在中學數學課程中體現問題解決的思想,是解決上述問題的有效途徑。
(三)數學觀的發展
數學發展至今,人們對數學的總的看法由相對靜態的觀點轉向靜態和動態相結合的觀點。對于數學是什么,經典的是恩格斯的定義:數學是研究現實世界空間形式和數量關系的科學。恩格斯對數學的觀點是相對靜止的,它主要指出了數學的客觀真理性,然而,當今的社會實踐告訴人們還應該用動態的觀點去認識數學,即從數學與人類實踐的關系去認識數學。就數學教育而言,學生之所以要學習數學,除了數學的客觀真理性,更在于數學是改造客觀世界的重要工具。學數學,首先是為了應用。應用數學是學數學的出發點和歸宿。所以,數學教學的主要任務是教給學生在實際生活和生產實踐中最有用的數學基礎知識,并在教學過程中有意識地培養學生應用這些知識分析和解決實際問題的能力。
(四)問題解決過程和方法的一般性
在解決來自實際和數學內部的數學問題中,問題解決的過程和方法是基本相同的。不僅如此,這種過程和方法與解決一般的、其它學科中問題的過程和方法有很多共同之處。在數學問題解決中學習的過程和方法可以遷移到其它學科的問題解決過程中。此外,相對于其它學科的問題來學,解決數學問題所需要的工具和材料要少得多,有時只需要一支筆,一張紙。因而通過數學問題解決,可以較快地教給學生一般的問題解決的過程和思想方法,具有較高的效率。
三、“問題解決”和中學數學課程
問題解決在各國的中學數學課程中的引入方式各不相同,英國SMP數學課程專門設置了一種問題解決課,我國人民教育出版社出版的義務教育初中數學課程中設立了實習作業、應用題、想一想、做一做等,在高中數學試驗課本中也增加了研究題等,這些和問題解決思想是一致的。筆者認為,從目前中國的實際情況出發,重要的是在中學數學課程中去體現問題解決的思想精髓,這就是它所強調的創造能力和應用意識。就是說,在中學數學課程中應強調以下幾點:
(一)鼓勵學生去探索、猜想、發現
要培養學生的創造能力,首先是要讓學生具有積極探索的態度,猜想、發現的欲望。教材要設法鼓勵學生去探索、猜想和發現,培養學生的問題意識,經常地啟發學生去思考,提出問題。
學生學習的過程本身就是一個問題解決的過程。當學生學習一門嶄新的課程、一章新的知識、乃至一個新的定理和公式時,對學生來說,就是面臨一個新問題。例如,高中數學課是在學生學習了初中代數、幾何課以后開設的,學生對數學已經有比較豐富的感性認識,教科書中是否可以提出,或者說應該教學生提出以下的一些問題:高中數學課是怎樣的一門課?高中數學課和小學數學、初中代數、初中幾何課有什么關系?數學是怎樣的一門科學?這門科學是怎樣產生和發展起來的?高中數學將要學習哪些知識?這些知識在實際中有什么用?這些知識和以后將要學習的數學知識、高中其它學科知識有些什么關系,有怎樣的地位作用?要學好高中數學應注意些什么問題?當然,對這些問題,即使是學完整個高中數學課程以后,也不一定能完全回答好,但在學這門課之前還是要引導學生去思考這些問題,這也正是教科書編者所要考慮并應該盡可能在教科書中回答的。筆者認為,在高中數學課中可以安排一個引言課。同樣,在每一章,乃至每一單元都應該考慮類似的問題。在這一點,初中《幾何》的引言值得參考。在教科書中經常提一些啟發性的問題,就會讓學生逐步養成求知、好問的習慣和獨立思考、勇于探索的精神。
無論是教科書的編寫還是實際教學,在講到探索、猜想、發現方面的問題時要側重于“教”:有時候可以直接教給學生完整的猜想過程,有時候則要較多地啟發、誘導、點撥學生。不要在任何時候都讓學生親自去猜想、發現,那樣要花費太多的教學時間,降低教學效率。此外,在探索、猜想、發現的方向上,要把好舵,不要讓學生在任意方向上去費勁。
(二)打好基礎
這里的基礎有兩重含義:首先,中學教育是基礎教育,許多知識將在學生進一步學習中得到應用,有為學生進一步深造打基礎的任務,因而不能要求所學的知識立即在實際中都能得到應用。其次,要解決任何一個問題,必須有相關的知識和基本的技能。當人們面臨新情景、新問題,試圖去解決它時,必須把它與自己已有知識聯系起來,當發現已有知識不足以解決面臨的新問題時,就必須進一步學習相關的知識,訓練相關的技能。應看到,知識和技能是培養問題解決能力的必要條件。在提倡問題解決的時候,不能削弱而要更加重視數學基礎知識的教學和基本技能的訓練。
教給學生哪些最重要的數學基礎知識和基本技能,是問題的關系。目前,《全日制普通高級中學數學教學大綱(供試驗用)》中關于課程內容的確定,已為更好地培養我國高中學生運用數學分析和解決實際問題的能力提供了良好的條件。我們要繼承高中數學教材編寫中重視數學基礎知識和基本技能的優良傳統和豐富經驗,編出一套高質量的高中數學教材,以下僅對數學概念的處理談點看法。
數學概念是數學研究對象的高度抽象和概括,它反映了數學對象的本質屬性,是最重要的數學知識之一。概念教學是數學教學的重要組成部分,正確理解概念是學好數學的基矗概念教學的基本要求是對概念闡述的科學性和學生對概念的可接受性。目前,對中學數學概念教學,有兩種不同的觀點:一種觀點是要“淡化概念,注重實質”,另一種觀點是要保持概念闡述的科學性和嚴謹性。高中數學課程的建設也面臨著同樣的問題。筆者認為,對這一問題的處理應該“輕其所輕,重其所重”,不能一概而論。提出“淡化概念,注重實質”是有針對性的,它指出了教材和教學中的一些弊端。一些次要和學生一時難以深刻理解但又必須引入的概念,在教學中必須對其定義作淡化(或者說淺化)的處理,有的可以用白體字印刷,來表明概念被淡化。但一些重要概念的定義還是應以比較嚴格的形式給出為妥,否則,雖然老師容易判定這些概念的定義是被淡化的,但是學生容易對概念產生誤解和歧義,關鍵在于教師在教學中把握好度,突出教學的重點。還有一些概念,在數學學科體系中有重要的地位和作用,對這類概念,不但不能作淡化處理,反之,還要花大力處理好,讓學生對概念能較好地理解和掌握。例如,初中幾何的點概念、高中數學的集合等概念,是人們從現實世界廣泛對象中抽象而得,在教材處理中要讓學生認識到概念所涉及的對象的廣泛性,從而認識到概念應用的廣泛性,另外學生也在這里學到了數學的抽象方法。對于數學概念,應該注意到不同數學概念的重要性具有層次性。總之,對于數學概念的處理,要取慎重的態度,繼承和改革都不能偏廢。
(三)重視應用意識的培養
用數學是學數學的出發點和歸宿。教科書必須重視從實際問題出發,引入數學課題,最后把數學知識應用于實際問題。可以考慮把與現實生活密切相關的銀行事務、利率、投資、稅務中的常識寫進課本。
當然,并不是所有的數學課題都要從實際引入,數學體系有其內在的邏輯結構和規律,許多數學概念是從前面的概念中通過演繹而得,又返回到數學的邏輯結構。
此外,理論聯系實際的目的是為了使學生更好地掌握基礎知識,能初步運用數學解決一些簡單的實際問題,不宜于把實際問題搞得過于繁復費解,以致于耗費學生寶貴的學習時間。
(四)教一般過程和方法
在一些典型的數學問題教學中,教給學生比較完整的解決實際問題的過程和常用方法,以提高學生解決實際問題的能力。
由于實際問題常常是錯綜復雜的,解決問題的手段和方法也多種多樣,不可能也不必要尋找一種固定不變的,非常精細的模式。筆者認為,問題解決的基本過程是:1.首先對與問題有關的實際情況作盡可能全面深入的調查,從中去粗取精,去偽存真,對問題有一個比較準確、清楚的認識;2.擬定解決問題的計劃,計劃往往是粗線條的;3.實施計劃,在實施計劃的過程中要對計劃作適時的調整和補充;4.回顧和總結,對自己的工作進行及時的評價。
問題解決的常用方法有:1.畫圖,引入符號,列表分析數據;2.分類,分析特殊情況,一般化;3.轉化;4.類比,聯想;5.建模;6.討論,分頭工作;7.證明,舉反例;8.簡化以尋找規律(結論和方法);9.估計和猜測;10.尋找不同的解法;11.檢驗;12.推廣。
(五)創設問題情景
1.一個好問題或者說一個精彩的問題應該有如下的某些特征:(1)有意義,或有實際意義,或對學習、理解、掌握、應用前后數學知識有很好的作用;(2)有趣味,有挑戰性,能夠激發學生的興趣,吸引學生投入進來;(3)易理解,問題是簡明的,問題情景是學生熟悉的;(4)時機上的適當;(5)難度的適中。
2.應該對現有習題形式作些改革,適當充實一些應用題,配備一些非常規題、開放性題和合作討論題。
(1)應用題的編制要真正反映實際情景,具有時代氣息,同時考慮教學實際可能。
(2)非常規題是相對于學生的已學知識和解題方法而言的。它與常見的練習題不同,非常規題不能通過簡單模仿加以解決,需要獨特的思維方法,解非常規題能培養學生的創造能力。
(3)開放性問題是相對于“條件完備、結論確定”的封閉性練習題而言的。開放性問題中提供的條件可能不完備,從而結論常常是豐富多彩的,在思維深度和廣度上因人而異具有較大的彈性。
關鍵詞:新課程標準,教材編寫,教師教學,學生評價,教育觀念。
現代中學數學教育是基礎教育非常重要的一部分,對于培養中學生獨立思考能力、分析能力、推理能力、計算能力、空間想象能力等都是非常重要的,是“素質教育”的內涵之一。
幾年前,我國數學教育工作者提出:中學數學的素質教育或者說中學數學素質的教育是——人人學有價值的數學;人人都能獲得必需的數學;不同的人在數學上得到不同的發展。[1]
對于現代中學數學教育的現狀,美國內布拉其斯加大學數學教授史蒂文·鄧巴認為:“之所以杜克大學的籃球水平始終能夠保持在美國頂尖位置上,就是因為學校、教師以及家長們的通力合作,才造就出一批又一批籃球精英。然而目前美國中學的多數學生只知道把數字填進公式里,而不去理解怎樣運用這些數據去解決實際問題。這正是我們在中學數學教育方面失敗的所在。”
美國官方和教育專家們認為,一些亞洲和東歐國家在中學數學教學中,注意培養學生的分析、論證和解決問題的能力。而美國則把注意力放在一般的書本練習方面。這些完全不同的方法使得美國中學生數學成績不佳。美國數學教育專家們呼吁,重新制定數學教學大綱。把解決問題、理解概念和實際應用三者結合起來,設計和安排教學內容,以盡快提高美國學生的數學水平。
20世紀以來,數學發生了巨大的變化,與計算機的結合,使數學在研究領域、研究方式和應用范圍等方面得到了空前的發展。現代中學數學教育地的觀念和內容也與以往有所不同了,解決問題、理解概念和實際應用三者結合起來就是現代數學教育的主旋律。
當前我國中學數學教育的大致情況是,學校里愛好數學、成績好、又覺得比較輕松的學生不太多,多數學生對學習數學缺乏興趣。花的力氣不少,但成績并不好,數學成了學習的負擔,攔路虎。大多數學生很難達到理想的數學水平和能力。其中有課程標準要求過高的原因;有教材內容過多過繁的原因;有教師水平不整齊,教得不夠活的原因;更有現行評價體制的原因,因為數學是主科,總歸是要考的,應試、要考高分的牽制力是很大的。
隨著新的課程標準的出臺,將會逐漸改變這種局面,但是執行新課程標準的人數以萬計,我們必須統一認識,為我國中學數學教育發展,為培養新一代人才而達成共識。
一、關于課程標準的思考
由美國數學教育家的呼吁可見,課程標準是左右一代人的數學素質的行動性綱領,不可不高度重視,不可不認真制訂,不同的課程標準培養出不同的人。在重視數學素質教育的課程下,培養出來的人雨季一定比注重數學分數的應試教育的課程標準下的人才要多而且精。可以說課程標準是指揮教材編寫、教師教學、學生學習、社會和家長形成數學教育觀念的魔棒。在教育普遍受重視的今天,課程標準的制訂更是關乎一代人的成長與發展的最重要的綱領性文件。
我國現行的課程新標準較以往的課程標準,顯然是先進了不少,更符合國性和現代化建設的需要,其制訂的基本理念是突出體現基礎性、普及性、應用性、發展性、創造性,現階段看來是合理的,課程新標準要求數學教育要面向全體學生,這也是完全正確的,也完全符合數學文化素質的內涵。
課程新標準界定了數學素質的內涵,其中不同的人在數學上得到不同的發展更是精華;把數學看成是工具,用以處理數據、進行計算、推理和證明等;把數學看成是為其它科學提供語言、思想和方法的基礎學科;把數學看成是培養推理能力、抽象能力、想象能力和創造能力的手段;把數學看成是人類文化的組成部分。后二者是十分重要的理念,這就為數學的素質教育各個環節拓寬了視野,開啟了思路。
如果要求大部分人都掌握高深的數學計算、推理和證明,把數學當作是人人都必須掌握的接受進一步教育的敲門磚。當然會使有的青少年把數學當作攔路虎而不當作培養能力的手段和數學文化,從而使在其它領域本的所發展和創造的人才。因為數學的緣故而失去信心、失去機會,這當然是課程標準的罪過而不是數學的緣故。但是,課程新標準也存在一些問題,如從實踐的角度考慮,如何解決“個體化教學”與班級授課制這一現實之間的矛盾[2]。課程標準的制訂應是一個長期的探索的過程,不可能幾個專家一揮而蹴,要反復實踐,不斷修改,不斷更新,以適應新時期發展的需要。
總之,有了新的課程標準,便會有相應的新教材,相應的新教法,相應的新學法,相應的新評價,相應的新理念,也會改變現代中學數學教育的現狀。
二、關于教材編寫的思考
教材為學生的學習活動提供了基本的線索和工具,是實現課程標準、提高數學素質、實施數學教學的重要資源。教材和課程標準一樣是造就一代人的數學素質的工具,不可不高度重視,在班級授課制的教學體制下,一定程度上,可以說用什么樣的教材就能培養什么樣的人才,毫無疑問,在課程新標準下的教材的編寫,已不再是過去那種單一化的版本,而是百花齊放的局面,這為各類學校提供了比較和選擇的余地。可以根據校情、班情進行選擇,這是一大進步。
新教材所選擇的數學素材,就來源于自然、社會與科學中的現象,是密切聯系當前生活實際的問題,把數學問題生活化,讓數學知識回到現實生活中,將其產生和發展的過程返璞歸真,給學生創設問題情境[3],不要為問題而脫離實際,使數學純化,與生活產生隔閡,但也要反映一定的數學價值,將數學本來的魅力充分展現出來。
新教材的內容編排和呈現突出了知識形成與應用過程,輕結果重過程,體現了螺旋上升的原則,采用逐步加深的方式,引導學生對數學知識、思想和方法的理解,這比以往的教材改進了許多。
新教材的最重要的一個特點是關注了學生人文精神的培養,介紹了有關的數學背景,特別是設計上先進了許多,這是很好的。作為數學教師應深入領會教材的編寫意圖,擯棄傳統的教育理念,以提高學生的數學素養為最終目的,充分發揮教材的教育和教學功能[4]。
但是,在眾多執行新課程標準的人中,教材編寫者是第一批執行者,若他們偏離軌道。真可以說是差之毫厘,謬以千里,事實上,從目前的教材看就有此嫌疑,分明新課程標準不作要求的內容或者說已過時的內容,不在正文中出現,便要在教材的習題中出現,于是下面教學者,進一步擴大其力度,再走幾步,可想而知,課程新標準也就新不了了,和原來列二致,這當然是指少數內容了。所以,好的教材應是以課程新標準為依據的,不偏不倚,恰如其分,帶頭執行課程新標準的。
總之,的了新教材,便會的相應的新素材,相應的新教法,相應的新學法,也會改變現代中學數學教育的現狀。
三、關于教師教學的思考
數學教學是數學活動的教學,是數學思維過程的教學,是師生之間、同學之間交往互動與共同發展的過程。
數學教學應根據所要完成的教材內容,從學情出發,在課堂教學中創設有助于學生自主學習的問題情境,發揮學生的主體性,課堂上教師要摒棄師道尊嚴,發揚教學民主。激發學生的學習潛能,鼓勵學生大膽創新與實踐,同時發揮教師的主導地位,組織、引導學生的數學學習活動,與學生合作,努力引導學生從已有的知識和經驗出發,進行自主探索現合作交流,并在學習過程中逐步學習、漸漸進步,引導學生通過實踐、思考、探索、交流,獲取知識,形成技能,鍛煉思維,發展能力,學會學習,促使學生在教師的指導下生動活潑地、主動地、富有個性地學習,不僅學到知道,更學到方法、思想。從目前的情況看,數學教學的情況遠非如此,估且不論教師的水平是否可以達到,就教師的態度就值得懷疑,有的教師想如此卻不敢如此,這與社會的教育觀念相關。
教師教學離不開數學教材,數學教材是數學教學的媒體,是學生學習活動的主線,教材不可能適應每個班每個人,教師要發揮主動性和積極性,創造性地使用教材,進行創造性教學,結合學情利用教材,在課堂上,關注學生要多于關注教材,教育是一種關注,關注學生的成長,關注學生的學習目的,學習內容,學習方式,學習環境,關注學生的個體差異[5],適時地實施有差異的教學,使每個學生得到充分的發展。事實上,關注教材比關注學生多的情況還存在,忽略學生的學習目的,學習內容,學習方式,學習環境,忽略個體差異的情況更是比比皆是,教師的教育觀念也有待改變。
教師教學還要好緊跟時代,利用現代教育技術在教學中的應用,有效地使用多媒體技術,多媒體技術可以使學習的內容圖文并茂,栩栩如生,自然增加了教學的魅力,使學習者保持良好的學習興趣,提高教學效益[6]。從目前的情況看,現代教育技術還停留在紙上者居多,現代教育技術的培訓也是走過堂,沒有真正落實,甚至有的地方現代教育技術的設備只是不動產而已,這是相當可惜的資源浪費。可以說,今天讓學生使用壞一臺電腦,將來他會創造出若干臺電腦,教育要舍得投資。
四、關于學生評價的思考
教與學都要評價,評價的目的是全面考察學生的學習狀況,激勵學生的學習熱情,促進學生的全面發展,評價也是教師反思和改進教學的有力手段。
對學生數學學習的評價,傳統的評價手段比較單一,主要是測驗與考試,只關注學習對知識與技能的理解與掌握,只關注學生數學學習的結果,事實上對學生數學學習的評價還要關注他們的情感和態度的形成和發展,還要關注學生的學習過程,評價以定性描述為主,充分關注學生的個性差異,不要把學生理想化。對學生數學學習的評價手段和形式要多樣化,要重視數學學習過程的評價,課堂上適時對學生進行評價,保護學生的自尊心和自信心,發揮評價的激勵作用。
對學生數學學習的評價,不僅僅是評價學生,還應評價教師的教學,教師要善于利用評價所提供的大量信息,適時調整和改進教學方法。有部分教師還認為對學生數學學習的評價只是評價學生,這中、是不對的。
五、關于教育觀念的思考
現在,家長和社會的教育觀念一定程度上還停留在應試教育觀念上,甚至一部分教師也不例外,之所以出現這種現象,不在于課程標準,也不在于教材,而在于教師的教學和對學生的評價上。
首先,現在對學生評價的手段單一,還是定量評價為主的唯分數論英雄,在高考的指揮棒下,學生要當英雄就晝拿高分,學生的學習熱情不是被激勵出來的,而是利益驅動下產生的。
其次,現在教師教學也并未脫離應試教育,素質教育還停留在口頭上,對教師而言,不是不想進行素質教育,這里有水平、觀念的原因,也有其它原因,還有社會觀念的原因。
素質教育觀念的形成,光靠課程新標準的制訂和執行,光靠新教材的開發利用,光靠教師和新教法,靠新的學生評價機制,都不足以形成,必須一步一步地走,中一個漫長而復雜的過程。為了盡快縮短這個過程的時間,的有利于國家和民族的強大,多出人才,必須大家都行動起來。
參考文獻:
[1]《數學課程標準(實驗稿)》北京師范大學出版社2002
[2]《改革熱潮中的冷思考》鄭毓信《中學數教學參考》9/2002
[3]《新教材中的問題情境創設》陳輝志大才疏《湖南教育》6/2003
[4]《引言教學的心理學意義》劉吉存/孔令夯《中學數教學參考》12/2002